imported>Paul Wormer |
imported>Paul Wormer |
Line 36: |
Line 36: |
| \left[ \ell(\ell+1) - \frac{m^2}{1-x^2}\right] P^{m}_\ell(x)= 0 . | | \left[ \ell(\ell+1) - \frac{m^2}{1-x^2}\right] P^{m}_\ell(x)= 0 . |
| </math> | | </math> |
| | One often finds the equation written in the following equivalent way |
| | :<math> |
| | \left( (1-x^{2})\; y\,' \right)' +\left( \ell(\ell+1) |
| | -\frac{m^{2} }{1-x^{2} } \right) y=0, |
| | </math> |
| | where the primes indicate differentiation with respect to ''x''. |
| | |
| In physical applications it is usually the case that ''x'' = cosθ, then the associated Legendre differential equation takes the form | | In physical applications it is usually the case that ''x'' = cosθ, then the associated Legendre differential equation takes the form |
| :<math> | | :<math> |
Revision as of 04:17, 6 September 2009
In mathematics and physics, an associated Legendre function Plm is related to a Legendre polynomial Pl by the following equation
For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1−x ² )½ and hence is not a polynomial.
The associated Legendre functions are important in quantum mechanics and potential theory.
According to Ferrers[1] the polynomials were named in 1875 "Associated Legendre functions" by the British mathematician Isaac Todhunter,[2] where "associated function" is Todhunter's translation of the German term zugeordnete Function, coined in 1861 by Heine[3] and "Legendre" is in honor of the French mathematician Adrien-Marie Legendre (1752–1833), who was the first to introduce and study the polynomials Pl(x).
Differential equation
Define
where Pl(x) is a Legendre polynomial.
Differentiating the Legendre differential equation:
m times gives an equation for Πml
After substitution of
and after multiplying through with , we find the associated Legendre differential equation:
One often finds the equation written in the following equivalent way
where the primes indicate differentiation with respect to x.
In physical applications it is usually the case that x = cosθ, then the associated Legendre differential equation takes the form
Extension to negative m
By the Rodrigues formula, one obtains
This equation allows extension of the range of m to: .
Since the associated Legendre equation is invariant under the substitution m → −m, the equations for Pl ±m, resulting from this expression, are proportional.
To obtain the proportionality constant we consider
and we bring the factor (1−x²)−m/2 to the other side.
Equate the coefficient of the highest power of x on the left and right hand side of
and it follows that the proportionality constant is
so that the associated Legendre functions of same |m| are related to each other by
Note that the phase factor (−1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1−x²)m.
Orthogonality relations
Important integral relations are:
(see the subpage Proofs for a detailed proof of this relation) and:
Recurrence relations
The functions satisfy the following difference equations, which are taken from Edmonds.[4]
-
Reference
- ↑ N. M. Ferrers, An Elementary Treatise on Spherical Harmonics, MacMillan, 1877 (London), p. 77. Online.
- ↑ I. Todhunter, An Elementary Treatise on Laplace's, Lamé's, and Bessel's Functions, MacMillan, 1875 (London). In fact, Todhunter called the Legendre polynomials "Legendre coefficients".
- ↑ E. Heine, Handbuch der Kugelfunctionen, G. Reimer, 1861 (Berlin).Google book online
- ↑ A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 2nd edition (1960)