Bounded set: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Jitse Niesen
imported>Subpagination Bot
m (Add {{subpages}} and remove any categories (details))
Line 1: Line 1:
{{subpages}}
In [[mathematics]], a '''bounded set''' is any [[set|subset]] of a [[normed space]] whose elements all have norms which are bounded from above by a fixed positive real constant. In other words, all its elements are uniformly bounded in magnitude.
In [[mathematics]], a '''bounded set''' is any [[set|subset]] of a [[normed space]] whose elements all have norms which are bounded from above by a fixed positive real constant. In other words, all its elements are uniformly bounded in magnitude.


==Formal definition==
==Formal definition==
Let ''X'' be a normed space with the [[norm (mathematics)|norm]] <math>\|\cdot\|</math>. Then a set <math>A \subset X</math> is bounded if there exists a real number ''M>0'' such that <math>\|x\|\leq M</math> for all <math>x \in A</math>.
Let ''X'' be a normed space with the [[norm (mathematics)|norm]] <math>\|\cdot\|</math>. Then a set <math>A \subset X</math> is bounded if there exists a real number ''M>0'' such that <math>\|x\|\leq M</math> for all <math>x \in A</math>.
[[Category:Mathematics_Workgroup]]
[[Category:CZ Live]]

Revision as of 13:20, 27 January 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a bounded set is any subset of a normed space whose elements all have norms which are bounded from above by a fixed positive real constant. In other words, all its elements are uniformly bounded in magnitude.

Formal definition

Let X be a normed space with the norm . Then a set is bounded if there exists a real number M>0 such that for all .